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SUMMARY

Genes encoding subunits of the BAF ATP-dependent chromatin remodeling complex are among the most
enriched for deleterious de novo mutations in intellectual disabilities and autism spectrum disorder, but
the causative molecular pathways are not understood. Synaptic activity in neurons is critical for learning,
memory, and proper neural development. While BAF is required for activity-dependent developmental pro-
cesses, such as dendritic outgrowth, the immediate molecular consequences of neuronal activity on BAF
complexes are unknown. Here, we report that neuronal activity induces dramatic remodeling of the subunit
composition of BAF complexes within 15 min, concurrent with both phosphorylation and dephosphorylation
of its subunits. These biochemical effects are a convergent phenomenon downstream of multiple calcium-
activated signaling pathways in mouse neurons and mouse fibroblasts and correspond to changes in
BAF-dependent chromatin accessibility. Our studies imply that BAF decodes signals at the membrane by
altering the combinatorial composition of its subunits.

INTRODUCTION

Adenosine triphosphate (ATP)-dependent chromatin remodel-
ers facilitate transcription factor (TF) binding and activity by
regulating the accessible chromatin landscape through evict-
ing, translocating, and remodeling nucleosomes.” Genes en-
coding remodelers are among the most highly mutated in neu-
rodevelopmental disorders such as intellectual disabilities and
autism spectrum disorder.> Subunits of the BAF (Brg1/Brm-
associated factor) complex, also called mammalian SWI/SNF
(MSWI/SNF), are particularly enriched in de novo mutations in
these disorders, implicating them as likely causative.?®
Recently, recessive mutations in neuronal BAF complexes
were shown to be causative in autism.* Moreover, variants in
the gene PBRM1 (BAF180), a polybromo-associated BAF
(PBAF)-specific subunit, have been implicated in increased in-
telligence, cognition, and higher educational attainment in
genome-wide association studies.””’

Synaptic activity in neurons leads to immediate de novo tran-
scription of genes responsible for shaping social behavior,
learning, and memory.® Activity-dependent biochemical regula-
tion of many chromatin modifiers and TFs facilitates the tran-
scriptional response to neuronal activity.”"'* While BAF com-
plexes are critical to activity-dependent neuronal processes

such as dendritic arborization, > the direct molecular conse-
quences of synaptic activity on BAF complexes are unknown.

BAF complexes are macromolecular machines assembled
combinatorically from 15 different subunits encoded by 29
different genes.'”'® At least three main classes of mammalian
BAF complexes are present in all cells: canonical BAF (cBAF),
polybromo-associated BAF (PBAF), and non-canonical BAF
(ncBAF), each containing one of the two paralogous ATPases
(BRG1 or BRM) and class-specific, non-redundant subunits.°
For example, PBAF is defined by replacement of subunit
ARID1A/B (BAF250A/B) with ARID2 (BAF200) and BAF45B/C/D
with PHF10 (BAF45A) and by the inclusion of PBRM1 (BAF180)
and BRD?7. In total, PBAF is larger than cBAF by almost 0.5
MDa.'”'® Combinatorial selection of subunits gives the assem-
blies a cell-type and functional specificity.'”-*°

The formation of diverse protein interaction surfaces on BAF
complexes alters interactions with TFs, directs localization and
activity on chromatin, and guides biologic processes. For
example, during neural development, the neural progenitor-spe-
cific BAF subunits, ACLT6A (BAF53A) and SS18, are replaced by
neuron-specific subunits, ACLT6B (BAF53B) and SS181L
(CREST), respectively,”' in a switch orchestrated by microRNAs
miR-9 and miR-124.2"?? Postmitotic neurons have a specialized
neuronal BAF complex that is critical for neuronal function.>

2374 Molecular Cell 85, 2374-2389, June 19, 2025 © 2025 Published by Elsevier Inc. .


mailto:crabtree@stanford.edu
https://doi.org/10.1016/j.molcel.2025.05.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2025.05.017&domain=pdf

Molecular Cell ¢ CellP’ress
Article

A Cortical B Brg1 density sedimentation, neurons C Nuclear input, neurons ) BAF and PBAF subunits density sedimentation, neurons
- 5 Depolarizati Depolarization 0 mins.:
E165 ﬁ,:znl;?,f:).m time kDafx:6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
' 4—2:‘;_2(: -0 kpa 0 10' 30’ a5 ﬁun‘ﬁ”ukqd Brgt
0.4
DIVG silence: - 1ggE| Brgt - —— Smarco1
+TTX/D-APV o - 30 Smmb‘ =
DIV7: depolarize > <
+/- 50mM KCI g 0.2
10"0r 30 g
Nuclear extract Pbrm1

>1MDa Brd7 10 mi

kDEIb(S 6 9 11 12 13 14 15 16 17 18 19 20

0.0
] 0 5 10 15 20
Density sedimentation across Fraction Number Phf10
10-30% glycerol gradient
10% 30%

shared  PBAF-

subunits  specific

E F G subunits

Fibroblasts Brg1 density sedimentation, fibroblasts Nuclear input, fibroblasts
@ Stimulation Stimulation

E16.5

0.3+ time (mins):
0h: starve . d
0.5% FBS el HR peak Kba 30
24 h stimulate 5 |0l % « 185@ Brgt
15% FBS © 024 300 ‘(Pea 50:
g T o | st 20
§ kDa 1 12 13 14 15 16 17 18 19 20 VB
Nuclear extract 5 o 4
g™ Pbrm1 1854 Brg1
50
] Smarcb1
Density sedimentation across  0-0
10-30% glycerol gradient Phf10 Pbrm1
Brd7
>1MDa
1o ) 15
Legend:
shared  PBAF-
subunits  specific
subunits
0 mins. BAF and PBAF subunits density sedimentation, fibroblasts I Quantification of BAF and PBAF subunits, fibroblasts
ins.: .
KDa fx:5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 VB Snmulaﬂonos_ Brg1 0.4 Pbrm1
— _—— J— time -
‘le,_.‘—.— — — — ——_—dBm (mine):
50 S o2 g
I n-n-nnn-n----quamm go 'i
0| s 5
185 Pbrm1 § 3
[ [
X 0.0 U
Phf10 V2 X501 2 2RI™IABHUDAND V2 504 2 ARONIAIRLD
044 Fraction Number 0.254 Fraction Number
— 034 . _ 020
Brd7 g g
= £ 0154
2 02 2
s §
e — =l - § §orof
10 mins.: W & 0.14 st = 0.0
kDa fx:5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .
|85| I - —_—— |B | 0.0 0.00-
b & 03 V" © 04 2 AROXLIRGIDP 03 VP > 60 B AAMLANRGGIBAD
R T | Smarcb1 Fraction Number . Fraction Num.ber
2 B
185 Pbrm1 L I
--—-------—‘ o | B B
8 g
Y LB PR E
i I
Phf10
LsmimERLEN-

0.0
V35661 2 AONLARHLIBD VD 5664 S AIMHARGEIBAD

80_ o J ifi { Frac"o.n 1o K oty

Quantification of nuclear input, fibroblasts Assembly dynamics
N Brg1 Pbrm1 ichi
- - — 13 free _ o —  fully
s . 08 —DSF 08 subunits complexes complexes
30 mins.: we: s s =, [
kDa fx:5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ' £ o. M o u_%
IBSP '—————‘-“-“s«-‘d|8@1 g Hf' [Ii]
5 5
S 0.
[ e e e o-"lsmarctﬂ%
g . neuronal
e —— - 2 activity/  —»
e e et S bt d | PO S growth factor
Ed

signal

0
=T Lis T LER e
: timulation ti stimulation time complexes
Ll LT =T i

”u“lﬂ.uh .. @

(legend on next page)

Molecular Cell 85, 2374-2389, June 19, 2025 2375



¢? CellPress

Here, we map the direct molecular effects of signals at the
membrane on BAF complexes in the nucleus. We discover that
BAF and PBAF subunits are present in an equilibrium of three
states in resting cells: assembled complexes, partially assem-
bled complexes, and unassembled subunits. Synaptic activity
in neurons or growth factor signaling in fibroblasts prompts a
rapid (after 10 min) shift in the equilibrium to assembled com-
plexes. The compositional change is concurrent with function
on chromatin; more than 10% of activity-responsive DNA ele-
ments require BAF/PBAF ATPase function for producing acces-
sibility. We found evidence that PBAF assembly contributes to
opening at these elements. Moreover, subunits are rapidly hy-
per- and hypo-phosphorylated. Hyper-phosphorylation of
Smarcc2 (Baf170), a core subunit required for assembly of all
BAF complexes, is dispensable for assembly but sufficient to
redirect BAF activity on chromatin and to reprogram gene
expression. Our time-resolved biochemical and genomic exper-
iments indicate that BAF complexes are remarkably dynamic in
both composition and function, with implications for studies of
signal-dependent gene regulation.

RESULTS

Signal-dependent BAF complex assembly in neurons
and fibroblasts

To examine the direct consequences of synaptic activity on BAF
complex assembly, we examined the nuclei isolated from primary
cortical neurons cultured in vitro for 7 days*** from embryonic day
16.5 (E16.5) mice (Figure 1A). Neuronal activity was mimicked in
culture by depolarization with 50 mM potassium chloride to stimu-
late calcium influx through L-type voltage-sensitive calcium chan-
nels, and it leads to rapid expression of activity-dependent genes
such as c-Fos.?>?* Separation of native soluble nuclear proteins by
sedimentation through a 10%-30% glycerol gradient revealed that
10 min of depolarization causes a sharp peak of the ATPase sub-
unit Brg1 to form in fractions 13-16 (Figure 1B). This corresponds
to a ~1-MDa complex.'® In neurons silenced with the sodium
channel blocker tetrodotoxin (TTX) and the N-methyl-D-aspartate
(NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid
(D-APV), Brg1 was present almost uniformly across the gradient,
indicating that only a fraction of total Brg1 is assembled into larger
complexes in resting neurons (Figure 1B). The total levels of most
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nuclear BAF and PBAF subunits changed minimally after 10 min,
except for Smarcb1 (Baf47) and Brg1, which decreased modestly
after 30 min of depolarization (Figure 1C). Brg1 co-localized with
the pan-BAF subunit Smarcb1 (Figure 1D), indicating that the dy-
namics of Brg1 complex incorporation observed represent assem-
bly of BAF complexes. Indeed, depolarization prompted rapid as-
sembly of both BAF and PBAF, as evidenced by sharp localization
peaks at higher-molecular-weight fractions in their respective sub-
units after 10 and 30 min (Figure 1D). To validate our findings, we
evaluated BAF complex assembly using an alternate nuclear
extraction protocol by preparing extracts using a physiological-
salt (150 mM NaCl) buffer supplemented with benzonase.?*?°
Separation of complexes by glycerol gradient after 30 min of depo-
larization showed comparable assembly dynamics (Figures S1A-
S1C). Of note, the reduced enrichment of PBAF subunits in
150 mM NaCl-extracted nuclear protein, compared with extraction
using ammonium sulfate (used at 0.4 M, STAR Methods), is consis-
tent with studies showing that PBAF has a higher affinity for chro-
matin.?” Thus, membrane signaling prompts the assembly of BAF
and PBAF complexes inside the nucleus of a living cell.

To determine if the signaling-directed assembly of BAF com-
plexes occurs in other cell types, we examined BAF complexes
in mouse embryonic fibroblasts (MEFs) that had been serum-
starved or exposed to serum for 0, 10, or 30 min (Figure 1E). Quies-
cent fibroblasts respond to growth factors through calcium influx
and mitogen-activated protein kinase (MAPK) signaling by rapidly
inducing gene transcription®® with similar kinetics as in neu-
rons.'?'® Separation of complexes by glycerol gradient sedimen-
tation revealed that 10 min of stimulation causes Brg1 to accumu-
late preferentially in a broad peak around fraction 14 (Figure 1F).
As in neurons, Brg1 was distributed in assembled and un-assem-
bled complexes in quiescent fibroblasts; only ~70% of Brg1 was
incorporated in >~1-MDa complexes in resting fibroblasts
(Figure 1F). Not only did stimulation in fibroblasts assemble
Brg1 into BAF complexes, but it also significantly (p < 0.0001)
shifted the Brg1 distribution to higher fractions, overlapping with
PBAF-specific subunits with time (10-30 min of stimulation)
(Figure 1F). This indicated the incorporation of Brg1 into PBAF
and suggested that stimulation may change the relative stoichi-
ometry of fully assembled PBAF:BAF complexes. Changesintotal
BAF and PBAF subunit levels in the nucleus mirrored those in neu-
rons, with little change at 10 min and a modest decrease in

Figure 1. Signal-dependent BAF complex assembly in neurons and fibroblasts
(A) Schematic of glycerol gradient experiment in neurons with or without depolarization to model neuronal activity. DIV, day in vitro.

(B) Quantification of Brg1 protein levels across gradient fractions in neurons.
(C) Protein levels of BAF and PBAF subunits in inputs to gradient in neurons.

(D) Protein levels of subunits across gradients in neurons. Experiments in (B)-(D) are representative of two technical replicates (10’) or two biological replicates (0’

and 30).

(E) Schematic of gradient experiment in fibroblasts with or without serum stimulation to model growth factor signaling.

(F) Quantification of Brg1 protein levels across gradient fractions in fibroblasts; mean + SEM;

distance test between distributions.

(G) Protein levels of BAF and PBAF subunits in inputs to gradient in fibroblasts.

(H) Protein levels of subunits across gradients in fibroblasts.

ke

P < 0.001; significance computed by two-sample Wasserstein

(I) Quantification of subunits across gradient in fibroblasts; mean + SEM; Brg1 is reproduced from (F) for comparison.
(J) Quantification of subunits in inputs to gradients in fibroblasts; mean + SD. Experiments in (F)-(J) quantify or are representative of three (10') or four (0’ and 30)

biological replicates.
(K) Model of BAF complex assembly dynamics observed.
See also Figure S1 and Data S1.
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Figure 2. Neuronal activity assembles and stabilizes PBAF complexes
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(A) Schematic of IP-MS and nuclear proteomics experiment in neurons with or without depolarization to model neuronal activity; anti-Brg1 antibody used for IP

(STAR Methods). DIV, day in vitro.
(B) Schematic of BAF and PBAF complexes.

(C) Differential proteins (p < 0.05 and log, fold change > 0.5 or < -0.5) enriched with Brg1 IP after 10 min of neuronal activity; two biological replicates; p values

computed by two-sided unpaired t test.

(D) Enrichment of PBAF-specific subunits after Brg1 IP, normalized to bait (Brg1), after 10 or 30 min of neuronal activity and/or inhibition of calcium-activated
signaling; inhibitors used were CaMKKi: STO-609, 3 uM; MEKi: PD0325901, 3 pM; DCLKi: DCLK-IN-1, 2.5 pM; NFAT/CaNi: 10 nM FK506 + 1 pM cyclosporin A
(CsA); cyclosporin A and FK506 were used together because of the greater abundance of calcineurin in neurons, compared with FKBP (FK506-binding protein)
and cyclophilin, which are required for formation of inhibitor complexes®’; mean + SD, 2-3 biological replicates; p values computed by two-sided one-way
ANOVAs between the mean of 0’ and means of 10’ or 30’ only; *p < 0.05; for other BAF subunits, see Figure S2G.

(E) Total levels of all BAF subunits in whole nuclear extracts from neurons; mean + SD, two biological replicates.

See also Figure S2 and Tables S1 and S2.

Smarcb1 and Brg1 at 30 min (Figures 1G and 1J). Smarcb1 dy-
namics mirrored Brg1 indicating, as in neurons, the formation of
BAF complexes (Figure 1H). Consistent with the relative sizes of
cBAF complexes (~1 MDa) and PBAF complexes (~1.5
MDa),'”'® PBAF-specific subunits Pbrm1 (Baf180), Phf10
(Baf45a), and Brd7 separated preferentially into higher-molecu-
lar-weight fractions and assembled into complexes as a result
of stimulation (Figure 1H). Quantification of the changes in BAF
and PBAF distributions with time indicated that both categories
of complexes assemble within 30 min without significant changes
in total subunit protein levels (Figures 11 and 1J).

Altogether, our gradient analyses reveal that BAF subunits in
quiescent mitotic and postmitotic cells are maintained in an equi-
librium between three relative states: assembled complexes, un-
assembled sub-stochiometric sub-complexes, and individual
subunits (Figure 1K). Signals from the membrane prompt a shift
toward assembled complexes.

Activity assembles and stabilizes PBAF

To directly probe the effects of neuronal activity on BAF complex
subunit composition, we immunoprecipitated BAF complexes
with an antibody specific to Brg1, which is approximately 2.2-

fold more abundant in embryonic neuronal nuclear extract than
its homolog Brm (Table S1), after 10 or 30 min of depolarization
(Figure 2A and Figures S2A-S2F). Proteomic analysis identified
1,637 uniquely interacting proteins with Brg1 of which 1,452
had more than one peptide quantified, including all possible
BAF subunits (Table S2). Quantification of BAF subunit recovery
during each step of our extraction protocol indicated that the
input to the mass spectrometer contained ~90% of all BAF com-
plexes in the cell (Figure S2A). PBAF complexes incorporate four
complex-specific subunits®®: Arid2, Pbrm1, Phf10, and Brd7
(Figure 2B). All four PBAF-specific subunits (Figure 2B) were
significantly enriched (p value < 0.05 and log. fold change > 0.5)
in immunoprecipitated elutes after 10 min of depolarization
(Figure 2C). Normalization to bait (i.e., Brg1) indicated that all
four subunits increased their interaction with Brg1 by a compa-
rable magnitude (50%) (Figure 2D). There was no change in
enrichment of most of the other subunits that are common to
all BAF complexes such as Smarcc2 (Baf170), Smarcb1, or
Smarcel1 (Baf57), except for Dpf1 (Baf45b), which showed
reduced association to Brgl by 20% (Figure S2G). Dpfi
(Baf45b) is a paralog of Phf10 (Baf45a) that is mutually exclusive
in the BAF complex.'® The decrease in Dpfi could reflect
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Figure 3. BAF regulates 25% of neuronal activity-dependent chromatin
(A) Schematic ATAC-seq in neurons with or without depolarization to model neuronal activity and/or BAF ATPase inhibition (FHT1015, 100 nM). DIV, day in vitro.
(B) All DNA elements that show activity-dependent changes in chromatin accessibility (adj. p < 0.05 and log, fold change >1 or <-1).

(C) Only activity-dependent elements that changed significantly (adj. p < 0.05) upon BAF inhibition. For (B) and (C): two biological replicates; p values were
computed by two-sided Wald test and adjusted for multiple hypotheses by Benjamini-Hochberg.
(D) Proportion of all activity-dependent elements that are regulated by BAF.
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stabilization of PBAF at the expense of other types of BAF com-
plexes. The total protein levels of most BAF subunits did not
change significantly with depolarization, but biological variability
was observed (Figures 2E and S2D). Concurrent with stoichiom-
etry changes with respect to Brg1, PBAF complex formation in
neurons, as assessed by gradient separation of Pbrm1, peaked
at 10 min and appeared to disassemble after 30 min of depolar-
ization (Figures 1D and S1D). This result is consistent with our
immunoprecipitation coupled with mass spectrometry (IP-MS)
analyses that show that PBAF subunits increase their interaction
with Brg1 after 10 min of depolarization (Figure 2C). It also sug-
gests that prolonged signaling triggers a disassembly pathway
to regenerate BAF complexes or switch functions on chromatin.

Calcium influx in neurons activates multiple membrane-to-nu-
cleus signaling pathways including MAPK signaling,®'*? cal-
cium/calmodulin-dependent kinase signaling (CaMK),**"*° dou-
ble-cortin-like kinase signaling (DCLK),*”*® and calcineurin
(CaN)-nuclear factor of activated T cell (NFAT) signaling.®*%°
Each might produce biochemical modifications on BAF subunits
that mediate assembly. To examine this, we blocked each
signaling cascade by treating neuronal cultures with MAPK/
ERK kinase (MEK), calcium/calmodulin-dependent protein ki-
nase kinase (CaMKK), DCLK, or CaN inhibitors, respectively,
and assessed proteins enriched after Brg1 IP (Figures 2D and
S2C). Blockade of any one of the calcium-activated kinase cas-
cades reversed the enrichment of PBAF subunits with Brg1
(Figure 2D). This result raises the possibility that the increase in
PBAF:Brg1 stoichiometry is a convergent effect of multiple
membrane-to-nucleus signaling cascades. Taken together, our
biochemical analyses suggest that signaling at the membrane
results in rapid alteration in complex assembly and may trigger
the formation of PBAF complexes (or an intermediate in their for-
mation) while stabilizing PBAF complexes containing Brg1. How-
ever, our results do not rigorously exclude the rapid formation of
an alternative assembly only partially related to well-character-
ized PBAF complexes.

BAF regulates 25% of activity-dependent chromatin

We hypothesized that activity-induced BAF complex assembly
would mediate its remodeling functions on chromatin. To inves-
tigate activity-dependent changes in chromatin facilitated by
BAF, we began by identifying DNA elements that are the direct
targets of BAF downstream of neuronal activity. We built an atlas
of changes in accessible chromatin by assay for transposase-
accessible chromatin with sequencing (ATAC-seq) in neurons af-
ter acute (10 or 30 min) membrane depolarization and addition of
a specific Brg1/Brm ATPase inhibitor, FHT1015 (Figures 3A and
S3A). Neuronal activity significantly changed accessibility by
more than 2-fold (adj. p < 0.05) at 23,902 elements (Figure 3B).
These elements represent activity-dependent chromatin. BAF
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inhibition caused approximately 25% (n = 5,944) of these activ-
ity-dependent elements to significantly change (adj. p < 0.05)
(Figures 3C and 3D). Notably, 11.3% (n = 2,710) of activity-
dependent elements lost accessibility after BAF inhibition; ordi-
narily, most of these (93%) would have been opened after
neuronal activity (Figure 3C, top). Hence, BAF ATPase function
is required for neuronal activity to open chromatin at 10.5% of
activity-responsive elements.

Changes in chromatin accessibility were detected within
10 min of ATPase inhibition (Figure S3B), consistent with recent
studies of acute BAF inhibition or degradation in mouse embry-
onic stem cells (MESCs),*""** suggesting that BAF may be
poised on chromatin to initiate remodeling activity. Indeed,
cleavage under targets and release using nuclease (CUT&RUN)
in resting cortical neurons showed enrichment of Brgl and
Smarcc? at activity-dependent elements that lost accessibility
after BAF inhibition (Figure 3E), indicating that BAF was poised
to facilitate an activity-dependent response on chromatin
10 min after receiving a signal at the membrane. Activity-depen-
dent elements that gained accessibility after BAF inhibition had
comparatively little enrichment of Brg1/Smarcc2 (Figure 3E),
suggesting that accessibility changes at these elements are indi-
rect targets of BAF ATPase function.

Chromatin opened by BAF after neuronal activity occurred
preferentially at genes responsible for neuronal differentiation
and cellular plasticity, as evidenced by two different region-to-
function analyses. First, a hidden Markov model*® trained on
the epigenome of an E16.5 mouse forebrain“ revealed that the
elements dependent on both BAF and neuronal activity for open-
ing are bivalent promoters characterized by H3K27me3 and
H3K4me3 (Figure 3F). Bivalent domains maintain transcriptional
plasticity of a locus by preparing them to be induced upon
receipt of a developmental signal.** Second, region-to-gene
linkage analysis*® showed that these DNA elements regulate
genes important for the development of neuromuscular junctions
and dendritic spines (false discovery rate [FDR] < 0.01)
(Figure 3G). These results are consistent with neuronal BAF com-
plexes being essential for activity-dependent dendritic arboriza-
tion and activity-dependent synaptic plasticity.”* Combined, the
CUT&RUN and ATAC-seq data identified the direct, neuronal ac-
tivity-responsive targets of BAF complexes on chromatin.

PBAF directs activity-dependent chromatin opening

The DNA elements that require BAF ATPase function for activity-
dependent opening were enriched (adj. p < 0.0001) for the X-box
motif (Figures 4A and S3C). This is a 14-nt imperfect repeat
sequence bound by the evolutionarily conserved regulatory factor
binding to the X-box (RFX)-domain-containing TFs.“®*” Profiling
the accessibility footprint at X-box motifs genome-wide showed
that depolarization stimulated an increase in flanking accessibility

(E) Brg1 and Smarcc2 CUT&RUN in unstimulated neurons at summits of activity-dependent elements classified by their response to BAF inhibition from (C); signal
merged from two biological replicates and normalized by sequence depth; plotted profile is mean + SEM.

(F) Enrichment of chromatin states in activity-dependent elements that require BAF ATPase function; chromatin-state hidden Markov model trained on E16.5
mouse forebrain epigenome in Gorkin et al.“” Enh, enhancer; TSS, transcription start site.

(G) GO biological processes enriched in activity-dependent elements that require BAF ATPase function for opening; p values computed by Fisher’s exact test and

adjusted by Benjamini-Hochberg. cAMP, cyclic AMP.
See also Figure S3.
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Figure 4. PBAF directs neuronal activity-dependent chromatin opening

(A) Enrichment of transcription factor (TF) motifs in neuronal activity-dependent elements that require BAF ATPase function for chromatin opening (these elements
were defined in Figure 3C); p values computed by two-sided Fishers’ exact test and adjusted by Benjamini-Hochberg, labeled in red: FDR < 0.05.

(B) Footprint of accessibility at Rfx1 after neuronal activity and/or BAF inhibition.

(C) Comparison of Arid subunits in canonical BAF (cBAF) and PBAF complexes; de novo mutations in the RFX domain annotated (ClinVar). NDD, neuro-
developmental disorder; ZF, zinc finger; hs, Homo sapiens; mm, Mus musculus.
(D) Schematic of ATAC-seq in neurons with or without depolarization to model neuronal activity and/or CRISPR KO of Arid2; KO: Arid2 KO sgRNAs; NT: non-

targeting sgRNA. DIV, day in vitro.
(E) Protein levels of Arid2 after KO or NT.

(F) Differential footprints of TF motifs after 30 min of activity in KO vs. NT (left) or BAF ATPase inhibitor vs. DMSO in wild-type neurons (from Figure 3C) (right);
p values computed by two-sided t test of observed footprint change to mean of background footprint distribution.*® For (A)=(F): two biological replicates.

See also Figure S4 and Data S1.

that was dramatically lost upon BAF ATPase inhibition (Figure 4B).
The losses in accessibility spanned ~300 bp centered on the
motif, which is substantially larger than the average footprint of
a human TF (16 bp).*® This suggests that the footprint may reflect
the remodeler and its activity.

We hypothesized that activity-induced assembly of PBAF
(Figures 1 and 2) contributes to BAF chromatin remodeling activ-
ity via the introduction of RFX-DNA-binding capability in Arid2.
Arid2 is specific to PBAF complexes and contains an RFX-
DNA-binding domain as well as a C2H2 zinc finger (Figure 4C).
Both DNA-binding domains are unique to Arid2 among the three
paralogous BAF-complex Arids (Arid2, Arid1a, and Arid1b) and
thus represent a unique characteristic of PBAF (Figure 4C). The
Arid2 RFX domain shows sequence and structural homology to
the DNA-binding domains of Rfx TFs (Figures S4A and S4B). In
the yeast PBAF homolog, remodel the structure of chromatin
(RSC),”° the RFX domain is proximal to extra-nucleosomal linker
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DNA (Figure S4C); the RSC complex itself binds both the nucleo-
some and exit DNA to occupy wide, ~150- to 300-bp nucleo-
some-depleted regions.®' ARID2 is a strong candidate Simons
Foundation Autism Research Initiative (SFARI) autism risk gene,
and de novo mutations in the human ARID2 gene are implicated
in idiopathic and Coffin-Siris syndrome-like intellectual disabil-
ities,* including those found in the RFX domain (Figure 4C), sug-
gesting that it plays a biologic role in neurodevelopment.

To understand the contribution of PBAF to BAF-dependent and
activity-dependent chromatin opening, we generated Arid2
knockout (KO) neurons using lentiviral delivery of CRISPR-Cas9
and compared them with neurons infected with a non-targeting
(NT) CRISPR-Cas9 single-guide RNA (sgRNA) (Figure 4D). We
then assayed chromatin accessibility in KO and NT neurons from
two independent mice before or after depolarization for 30 min
(Figure 4D). Loss of Arid2 protein was incomplete (~70% lost) likely
due to the known long protein half-life of BAF subunits® (Figure 4E).
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Nevertheless, TF footprinting analysis using TOBIAS*® demon-
strated Arid2 KO significantly closed chromatin at X-box/Rfx mo-
tifs (0 < 107'%; adj. p < 0.0001), phenocopying the effect of BAF
inhibition (Figure 4F). Loss of accessibility at X-box elements was
greater than losses at any other TF motif (Figure 4F) and only
occurred in neurons in the depolarized state (Figure S4D). In unsti-
mulated neurons, KO caused gains of accessibility at AP-1 TF-
binding elements (Figure S4D), consistent with previous studies.*
Analysis of the variance in accessibility across all TF motifs>®
showed that KO caused the greatest losses in accessibility after
neuronal depolarization at the Rfx1/X-box motif (Figure S4E). Our
results indicate that neuronal activity requires Arid2-containing
PBAF to open chromatin at RFX/X-box sites.

We also compared the relative ability of KO and NT neurons
to open chromatin in response to neuronal activity at the DNA
elements (2,710) identified as requiring BAF ATPase activity
to gain accessibility (Figure S4F). The analysis indicated that
Arid2 KO reduces activity-dependent opening by BAF com-
plexes by ~25% (p < 0.001) (Figure S4F). The modest contribu-
tion to BAF-dependent opening is consistent with the observa-
tion that the pan-complex subunits Brg1 and Smarcc2 are
positioned at activity-responsive elements prior to neuronal ac-
tivity (Figure 3E), which could indicate the presence of other
classes of BAF complexes. Hence, PBAF partially contributes
to the total response of BAF to neuronal activity.

While we cannot rule out that RFX TFs may interact with BAF
complexes to recruit its activity, neither our proteomics nor tran-
scriptomic datasets nor publicly available proteomic datasets
show evidence supporting a direct interaction. Of the eight
mammalian RFX TFs (RFX1-8), only three (Rfx3, Rfx1, and Rfx5)
were detected in our total neuronal nuclear extracts by mass spec-
trometry (Figure S4G). Zero peptides of any of these were detected
inour BAF IP-MS (Figure S4G). Only Rfx3 and Rfx7 were expressed
at high levels in cortical neurons by RNA-seq (Figure S4H); howev-
er, neither those nor any of the other RFX TFs have been detected
to interact with any of the 29 different BAF subunits in 2 different
public compilations of protein interactomes (STRING®*°° and
BioGRID>*%%) in either mouse or human cells.

Altogether, our analyses suggest that PBAF complexes con-
taining Arid2 bind directly to DNA with sequence specificity. Since
neuronal activity stabilizes the Arid2-Brg1 interaction (Figure 2C),
and Brg1 is already bound to activity- and BAF-dependent
elements before neuronal activity (Figure 3E), our ATAC-seq
analyses indicate that assembly of PBAF (Figure 2) is important
for sequence-specific function but not necessarily recruitment.
Thus, neuronal activity triggers assembly (Figures 1 and 2) that
corresponds to functional chromatin remodeling (Figures 3 and
4). The causal connection between assembly and recruitment
on chromatin remains to be explored.

Neuronal activity causes immediate BAF
phosphorylation

Neuronal activity triggers activation of poised TFs such as cyclic
adenosine monophosphate (CAMP)-responsive element binding
(CREB) and serum response factor (SRF) by phosphorylation®®
to drive activity-dependent transcription,'-30:3%:35:36.39 g hy-
pothesized that neuronal activity may similarly lead to phosphor-
ylation of BAF subunits, and that activity-induced phosphoryla-
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tion would regulate BAF assembly and chromatin remodeling
activity.

Phosphoproteomic profiling ofimmunoprecipitated BAF com-
plexes or total nuclear extracts from resting and depolarized
cortical neurons revealed 38 different high-confidence phospho-
sites on 12 unique BAF subunits (Figure 5A; Table S1). This rep-
resents 41% of the 29 different proteins known to assemble into
BAF complexes.'® Approximately half of these residues were
also identified as phosphorylated in nine other mouse tissues
or in mouse fibroblasts (Figure 5A). A specific set of ~6 residues
on Smarcc2, Bel7a, Smarca4, Dpf1, and Arid1a was significantly
(p value < 0.05, fold change > 1.5) hyper-phosphorylated after
10 and 30 min of depolarization, independent of changes in pro-
tein level (Figure 5B). The timescale of modification is compara-
ble with the timescales of phosphorylation of other activity-regu-
lated TFs and suggests that these six residues are direct targets
of neuronal activity. Consistent with a recent report that identi-
fied phosphorylation of serine 1382 on Brgl as required for
proper stress response in mice,”” we detected activity-induced
hyper-phosphorylation of serine 1349 on Brg1 (equivalent to
serine 1382 in other Brg1 isoforms) 10 min after depolarization.
On two subunits (Brg1 and Dpf2), activity-dependent hyper-
phosphorylation at certain residues was concurrent with
activity-dependent hypo-phosphorylation on other residues
(Figure 5A). Blockade of calcium-responsive kinase and phos-
phatase activity selectively reversed activity-induced hyper- or
hypo-phosphorylation in a residue-specific manner, with resi-
dues on the same BAF subunit responding differently to different
kinases, suggesting a notable specificity of action (Figure 5A).

Phosphorylation does not affect BAF assembly

To identify the biochemical consequences of phosphorylation,
we focused on Smarcc2, a core subunit common to both BAF
and PBAF complexes and essential for the first steps of complex
formation.'® Smarcc2 was hyper-phosphorylated by neuronal ac-
tivity not only in Brgl-immunoprecipitates but also in total
neuronal nuclear extracts (Figure 5A), suggesting it is a high-abun-
dance event. Specifically, serine 586 on Smarcc2 was signifi-
cantly hyper-phosphorylated after depolarization for 10 and
30 min in both datasets and attenuated after the addition of
CaMKK, MEK, or DCLK inhibitors but not NFAT/CaN inhibitors
(Figures 5A, 5B, S5A, and S5B), indicating dynamic regulation
by calcium-induced signaling pathways. Other phosphosites on
Smarcc?2 are required for the differentiation of neurons and neural
progenitors from ESCs.***° SMARCC2, the homologous human
gene, is a high-confidence autism gene®’ in which deleterious
de novo variants have been found in individuals with neurodeve-
lopmental delay.®” Reasoning that Smarcc2 regulation plays a
rate-limiting role in neural development and represents a critical
model of BAF function downstream of neuronal activity, we inves-
tigated how its activity-induced phosphorylation might affect BAF
assembly and regulation of gene expression.

We generated FLAG-tagged Smarcc2 constructs with muta-
tions at the serine 586 position to alanine (S586A), which cannot
be phosphorylated, or to glutamate (S586E), which is chemically
similar to a phospho-serine residue and mimics a constitutively
phosphorylated Smarcc2 (Figure 5C). Co-expression of mutant
or wild-type (WT) Smarcc2 constructs with green fluorescent
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Figure 5. Neuronal activity causes immediate BAF phosphorylation

T T T
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(A) Detected phosphosites on BAF subunits enriched after Brg1 IP-MS or detected in whole nuclear proteomics in neurons with or without depolarization to model
neuronal activity and/or inhibitors of calcium-activated signaling, compared with phosphosites detected in public datasets of mouse tissue®; 2-3 biological

replicates per condition; p values computed by two-sided Wald test.

(B) Differential phosphosites (p < 0.05 and log, fold change > 1.5 or < -1.5) on subunits enriched after Brg1 IP (norm. total protein) after 10 min of neuronal
activity; two biological replicates. For (A) and (B): p values computed by two-sided unpaired t test.

(C) Schematic of constructs transfected in HEK293T cells; sfGFP: super-folder green fluorescent protein.

(D) FLAG IP after co-transfection of Brg1-sfGFP and FLAG-Smarcc2 and immunoblot for GFP.

(E) FLAG IP after transfection of FLAG-Smarcc2 and immunoblot for endogenous Brg1 and Smarcb1 subunits. For (D) and (E): blots representative of two
biological replicates; mean + SEM, p values computed by one-way ANOVAs between WT and mutants; no significant (o < 0.05) changes were detected. OE, over-

expression.
See also Figure S5 and Data S1.

protein (GFP)-tagged Brg1 in HEK293T cells followed by FLAG IP
showed that (1) S586 phosphorylation is not required for interaction
with Brg1 (Figure 5D, comparison of WT to S586A), and (2) S586
phosphorylation is not sufficient to change the Smarcc2:Brg1
interaction (Figure 5D, comparison of WT to S586E). Both mutants
incorporated comparably well to WT into endogenous BAF and
PBAF complexes, as assessed by immunoblotting forendogenous
subunits (Figure 5E). Neither mutation affected the protein stability
of Smarcc?2 in cells.

To assess the biochemical consequences of Smarcc2
phosphorylation in neurons, we generated Smarcc2 KO cortical
neurons in culture and replaced the KO with an empty vector
(Vec), WT, S586A, or S586E Smarcc2 constructs by overex-
pression (Figures S5C and S5D). KO was ~80% complete after
18 days of culture (DIV18), and mutants were well expressed
at levels comparable to WT levels (comparison to co-infection
of non-targeting guide RNA, NT, and empty vector, Vec,
constructs [NT+Vec]) (Figure S5E). Co-immunoprecipitation
of FLAG-Smarcc2 constructs and BAF and PBAF subunits
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showed that neither Smarcc2 mutant affected incorporation
into endogenous neuronal complexes (Figures S5F and S5G).
Our data in neurons are consistent with our co-immunoprecip-
itation analyses in HEK293T cells and indicate that Smarcc2
phosphorylation does not affect complex assembly.

Smarcc2 phosphorylation is dispensable for the activity-
dependent neuronal response

To assess the direct contribution of Smarcc2 hyper-phosphor-
ylation to activity-dependent gene regulation, we analyzed the
transcriptome and chromatin accessibility landscape of neu-
rons in depolarized or unstimulated states after replacing
endogenous Smarcc2 with Vec, mutant, or WT constructs as
before (Figures 6A, S5D, and S5E). In response to depolariza-
tion, neurons with Smarcc2 deleted without replacement (KO-
+Vec) activated neuronal activity-induced genes including
Fos, Arc, and Npas4 as well as their unaltered counterparts
(NT+Vec) did, but they aberrantly activated and repressed hun-
dreds of other genes (adj. p < 0.05; 295 up and 491 down) that
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(A) Schematic of KO and replacement experiment to study Smarcc2 phosphorylation in neurons with or without depolarization to model neuronal activity, fol-

lowed by ATAC-seq or RNA-seq. DIV, day in vitro.

(B) Chromatin accessibility at elements significantly decreased after Smarcc2 KO (adj. p < 0.05 and log, fold change < —0.5) in unstimulated neurons; two
biological replicates; p value of difference in average accessibility computed by Kruskal-Wallis test.

(C) Accessibility at top 50 most variable transcription factor motifs across Smarcc? alleles in unstimulated neurons.

(D) Differential gene expression (adj. p < 0.05 and log, fold change > 0.5 or < —0.5) in unstimulated neurons across Smarcc? alleles; 2-3 biological replicates. For
(B) and (D): differential p values computed by two-sided Wald test and adjusted by Benjamini-Hochberg.

(E) GO biological processes enriched in genes induced by Smarcc2(S586E); p values computed by Fisher’s exact test and adjusted by Benjamini-Hochberg.
(F) Overlap of upregulated genes (from D) between Smarcc2(KO) and Smarcc2(S586E). For (B)—(F): NT, non-targeting sgRNA; Vec, empty overexpression vector;
KO, Smarcc2-targeting sgRNAs; WT, Smarcc2(WT); S586A, Smarcc2(S586A); or S586E, Smarcc2(S586E) overexpression.

See also Figures S6 and S7.

ordinarily remain unchanged (Figure S6A). Hierarchical clus-
tering of depolarization-induced changes indicated that over-
expression of either the WT or the S586A construct reversed
the dysregulation of activity-induced gene expression caused
by Smarcc2 KO (Figure S6A). On chromatin, depolarized neu-
rons with Smarcc2 KO showed acute losses of accessibility
at FOS:JUN and bHLH TF-binding sites, as expected,'”
which were reversed upon addback of WT or mutant con-
structs (Figure S6B).

Moreover, we analyzed activity-dependent dendritic outgrowth,
a neurodevelopmental process on a longer timescale (18 h) that
critically depends on BAF complexes.'®'®®® Smarcc2 deletion
diminished activity-dependent growth after depolarization, but
overexpression of either the WT or the S586A construct rescued
the defect (Figure S6C). Our data indicate that phosphorylation
of Smarcc2:S586 is dispensable for activity-dependent gene
regulation and activity-dependent dendritic outgrowth.

Smarcc2 phosphorylation redirects BAF activity to Sox-
binding sites

We reasoned that since neuronal activity led to hyper-phosphory-
lation of multiple Smarcc?2 residues (Figures 5A and 5B), nearby

phosphosites may compensate for loss of any one phosphoryla-
tion. Therefore, we isolated the effects of Smarcc2:S586 phos-
phorylation by analyzing S586E phospho-mimic allele in resting
neurons. Smarcc? is required for maintenance of accessibility at
3,982 DNA elements in resting neurons including AP-1 and
bHLH TF-binding sites (Figures 6B, 6C, and S7A) and regulates
the expression of 684 genes (Figures 6D and S7C). Re-introduction
of WT Smarcc2 restored accessibility at these loci (Figures 6B, 6C,
and S7A) and reversed almost all changes in gene expression
caused by Smarcc2 deletion (Figures 6D and S7C). In contrast,
overexpression of the phospho-mimic, Smarcc2:S586E construct
produced ~25% less restoration of accessibility at Smarcc2-regu-
lated elements (Figures 6B and S7B) than the WT construct did and
triggered aberrant expression of 438 other genes (Figures 6D and
S7C). Replacement of Smarcc2 by the S586E mutant could not
restore accessibility at AP-1 sites, which are known to require
BAF,“'? in contrast to replacement by the WT construct
(Figure 6C). Overexpression of Smarcc2:S586E clustered more
closely with Smarcc2 KO rather than Smarcc2 WT-overexpressed
transcriptomes (Figures 6D and S7D).

Given that the Smarcc2 mutants did not show differences in
protein stability or BAF complex incorporation (Figures 5E and
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5F), we hypothesized that the S586E mutation may redirect BAF
activity over the genome. Induced genes were enriched for bio-
logical processes related to nervous system development and
neuronal projections (Figure 6E). Also, 37% of the S586E-
induced genes were not inside the set of those affected by
Smarcc?2 deletion (Figure 6F), indicating some degree of gained
function. These included genes implicated in axonal outgrowth
and neuronal maturation, including Sema3a, Neurod6, and
Dnah7c (Figure 6F). Moreover, the S586E mutant increased
accessibility at Sox sites (Figure 6C). The gain of accessibility
at Sox motifs was not observed in neurons with Smarcc2 dele-
tion or replacement of Smarcc2 by the Smarcc2:S586A mutant
construct (Figure 6C), indicating that it is a gain-of-function ef-
fect. Sox TFs direct different neural differentiation pathways.®*
Increased accessibility at Sox sites is consistent with enrich-
ment of neurogenesis genes in S568E-induced transcripts
(Figures 6E and 6F). Our data suggest that the S586E allele is
multimorphic; it partially reduces chromatin accessibility at
BAF-regulated regions, such as AP-1 sites, while also opening
chromatin at Sox sites and activating neuronal maturation
genes. Therefore, activity-induced hyper-phosphorylation of
Smarcc2 may retarget BAF activity to produce accessibility
for neurogenic TFs.

DISCUSSION

Most studies of BAF (MSWI/SNF) complexes in living cells have
assumed its steady-state composition. Indeed, the subunits
were originally defined by their ability to resist dissociation
from the complexes under partially denaturing conditions.®>=°”
Here, we discovered that signals at the membrane trigger large-
scale compositional changes in BAF complexes on a minute
timescale. Acute neuronal activity led to assembly of BAF
and PBAF as well as hyper- and hypo-phosphorylation of mul-
tiple subunits. Activity-induced assembly was also observed
MEFs. These biochemical changes were buffered upon inhibi-
tion of several different calcium-activated kinases and phos-
phatases. Our data indicate a biochemical decoding of mem-
brane activity by controlling subunit composition of BAF in
the nucleus.

Past studies have shown that the subunits maintain their asso-
ciation with the Brg1/Brm ATPase even in the presence of 3-5 M
urea.®>°” Our results suggest the existence of an energy-depen-
dent chaperone controlling assembly of the BAF complex in
cells. While chaperones dedicated to this process have not
been identified, Roberts and coworkers reported that the
CUL4-DDB1 ES3 ubiquitin ligase complex substrate receptor
DCAF5 has a quality control function for BAF complexes and
promotes the degradation of incompletely assembled com-
plexes in the absence of SMARCB1 (BAF47).°® Therefore,
BAF-specific assembly chaperones may also exist. Because
most subunits of BAF complexes are tumor suppressors, and
13 of the 29 subunits are genetically implicated in idiopathic in-
tellectual disabilities or autism, the putative ATP-dependent
chaperone is also likely a tumor suppressor with loss-of-function
mutations in autism or intellectual disabilities.

Assembly and modification dynamics were responsible for
directing chromatin remodeling activity. Focusing on neurons,
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we mapped all activity-induced changes in accessible chro-
matin and determined that BAF activity is required for >1/10%"
of activity-dependent chromatin opening. Localization of re-
modeling in response to neuronal activity was in part directed
by PBAF complexes, which were assembled concurrently. Hy-
per-phosphorylation of a core subunit, Smarcc2, also contrib-
uted modestly to localization of activity. In short, we provide ev-
idence that the biochemical encoding of neuronal activity on
BAF complexes directly impacts its nucleosome remodeling
function on chromatin.

BAF complexes are generally considered to have little
sequence specificity. However, we found that the RFX domain
of Arid2 predicts locations of BAF activity over the genome after
excitatory stimuli. This domain is mutated in human neurodeve-
lopmental disorders such as idiopathic intellectual disability and
Coffin-Sirus syndrome (Figure 4). The RFX-binding site spans 14
nt and might provide an initial interaction with DNA and partici-
pate in stabilizing complexes on chromatin to facilitate nucleo-
some remodeling.

Neuronal activity remodels synapses and connections. The
requirement of BAF ATPase function for opening chromatin at
synaptic genes in response to neuronal activity (Figure 3) exem-
plifies the connection between the synapse and BAF. The ki-
netics of compositional and functional changes in BAF com-
plexes parallel the kinetics of neuronal activity-induced gene
expression,® suggesting that the biochemical changes of
neuronal activity observed here may facilitate activity-induced
transcription directly. One such mechanism, the mediation of ac-
tivity-induced RNA polymerase Il elongation, was reported®®
while this manuscript was in review.

More than 1,400 different BAF complexes can be combinatori-
cally assembled from 29 genes.'® In neural progenitors, subunit
switching controls cell-cycle exit and differentiation.?>”%"2
Could different environmental stimuli encode the assembly of
unigue BAF complexes to prompt different cell fates? In fibro-
blasts, BAF coordinates with cell-type-specific and broadly ex-
pressed TFs to establish accessibility at signal-dependent en-
hancers responsible for differentiation.’® Different subunit
compositions or modifications would form different composite
surfaces that reprogram interactions with other TFs and retarget
BAF on chromatin. The effects on chromatin of the multimorphic
Smarcc? allele that mimics hyper-phosphorylation exemplifies
this (Figure 6).

Human genetic studies have indicated that BAF complexes
play a surprisingly dominant role in neural development. ARID1B
(BAF250B) is the most frequently mutated gene in human intel-
lectual disability52'73 and is haploinsufficient for neural develop-
ment. Other subunits show genetic variations associated with
academic achievement and increased intelligence.®’ These ge-
netic studies indicate that the neural-specific nBAF complexes
play a dosage-sensitive, rate-limiting role in development of
the human brain. Recently Arid7b was found to execute its func-
tion on the social behavior in adult mice,”* rather than, as previ-
ously expected, during development. Because the social defects
caused by Arid1b deletion could be partially reversed by giving a
selective 5-HT1b receptor agonist to adult animals,”® it is
possible that Arid1b and the nBAF complex execute their func-
tions on a short timescale, perhaps by controlling membrane
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channels or synaptic composition. Thus, the excitatory response
of BAF could play a critical role not only in shaping the neural cir-
cuitry responsible for complex traits such as learning, memory,
and social behavior but also in tuning these neural circuits in
adult mammals, suggesting that the synapse-to-nucleus
signaling response of BAF may be a therapeutic target.

Limitations of the study

This work models neuronal activity in mouse cultured cortical neu-
rons and growth factor signaling in cultured fibroblasts, which are
removed from their tissue environments containing other cell
types and purified. Additionally, this study modeled activity using
membrane depolarization by 50 mM KClI, an established protocol
but with documented limitations.”> KCl-mediated depolarization
also activates many different intracellular signaling cascades.
Future work could explore the findings on BAF regulation reported
here in an animal using excitatory stimuli.
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This paper
This paper
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This paper
This paper
This paper
This paper
This paper
This paper
This paper

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Recombinant DNA
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pSG141-FLAG-Smarcc2 WT This paper N/A

pSG141-FLAG-Smarcc2 S586A This paper N/A

pSG141-FLAG-Smarcc2 S586E This paper N/A

CAG-IRES-GFP Wu et al.'®"? N/A

lentiCRISPR v2 Addgene Cat# 52961; RRID: Addgene_52961

psPAX2 Addgene Cat# 12260; RRID: Addgene_12260

pMD2.G Addgene Cat# 12259; RRID: Addgene_12259

Software and algorithms

Adobe Creative Cloud Adobe https://www.adobe.com/
creativecloud.html

Rstudio RStudio https://www.rstudio.com/

Python Python Programming Language https://www.python.org/

Image Studio LICORbio https://www.licorbio.com/image-studio

SnapGene Dotmatics https://www.snapgene.com/

Geneious Geneious https://www.geneious.com/

Prism GraphPad Software https://www.graphpad.com/

fastQC The Babraham Institute https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/

deeptools Ramirez et al.®" N/A

DEseq?2 Love et al.®? N/A

Kallisto Bray et al.®* N/A

Enrichr Chen et al.* N/A

PANTHER Mi et al.?>%¢ N/A

Cutadapt Martin et al.?” N/A

trim_galore The Babraham Institute https://github.com/FelixKrueger/
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Picard Broad Institute https://broadinstitute.github.io/picard/

macs2 Zhang et al.?® N/A

HOMER Heinz et al.* N/A

bedtools Quinlan et al.*° N/A

ChrAccR The Greenleaf Laboratory https://greenleaflab.github.io/ChrAccR/
articles/overview.html

chromVAR Schep et al.>® N/A
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TOBIAS Bentsen et al.*’ N/A
samtools Lietal.” N/A

SNT Arshadi et al.”” N/A
MSconvert Chambers et al.?® N/A

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal Husbandry

In all animal experiments, mice used were wild-type CD-1 outbred mice, housed at Stanford up to 5/cage in a colony with a 12-hour
light/dark cycle (lights from 7:00 am to 7:00 pm) at constant temperature (23°C) with ad libitum access to water and food. For mouse
neuron cultures, embryonic day 16.5 (E16.5) male and female mouse embryos were prepared from adult CD-1 wild-type females.
Animal protocols were approved by IACUC at Stanford University.

Mouse Embryonic Fibroblast (MEF) cell culture

Mouse embryonic fibroblasts were generated from F2 pups at E16.5 according to established procedure in Hathaway et al.®* and
immortalized with SV40 T antigen. MEFs were cultured in DMEM + 10% FBS + 1x penicillin-streptomycin and incubated at 37°C/
5% CO,. Cultures were passaged by trypsinization and were used before passage 10. Cultures were routinely checked for myco-
plasma and immediately checked upon suspicion. No cells tested positive.

HEK293T Cell Culture

HEK293T cells (Clontech #632180) were cultured in DMEM + 10% FBS + 1x penicillin-streptomycin and incubated at 37°C/5% CO..
Cultures were passaged by trypsinization and were used before passage 10. Cultures were routinely checked for mycoplasma and
immediately checked upon suspicion. No cells tested positive.

Primary Neuron Culture

Coating plates

Culture plates (Corning #353003) were coated overnight at room temperature by flooding with poly-D-lysine (Sigma #P6407) at
0.1 mg/mL in borate buffer (1.55 g boric acid/2.4 g sodium tetraborate in 500 mL sterile water). Plates were washed 3x with water
and 1x with PBS before plating neurons.

Dissection and culture

Cortical neurons were dissected and cultured following established protocols.*°® Pregnant female mice were anesthetized with iso-
flurane and euthanized by cervical dislocation on E16.5. A 4 cm long, V-shaped incision was made through the derma and muscle
layers of the lower abdomen just above the vaginal opening of the euthanized mouse. After pulling back skin and muscle, the uterus
was carefully disconnected and the string of embryos gently pulled from the abdomen and placed in a dish of sterile PBS on ice.
Fetuses were removed from the amniotic sac using forceps and baby scissors and placed in a second dish of fresh PBS on ice.
From this point onwards, the cortex from each embryo was considered a biological replicate. Individual embryos were transferred
on sterile filter paper in ice cold PBS and stabilized from behind the neck using a curved forcep. Using a sharp pair of forceps,
two incisions were made: above the olfactory bulbs between the eyes and upwards between the hemispheres skimming along
the underside of the skull. The flat side of a curved forcep was then used to apply gentle pressure from the brainstem to the eyes
to push the brain out of the skull. The brain was scooped up and placed in a fresh dish of sterile PBS on ice. The brain was anchored
vertically under a dissecting microscope by grasping near the brainstem using forceps. The meninges and remaining olfactory bulb
were removed by gently tugging along the length of the tissue. Using forceps, each hemisphere was gently lifted, avoiding the hip-
pocampus, striatum and basal ganglia, and transferred to a 15 mL sterile Falcon tube of ice-cold PBS and allowed to settle. Then,
cortices were enzymatically dissociated to single neurons with Neural Tissue Dissociation Kit (P) (Miltenyi Biotech #130-092-628).
Neurons were resuspended in plating media [DMEM (Life Technologies #11960-077), 10% FBS (Omega #FB-01), 1x penicillin-strep-
tomycin (ThermoFisher #15140122)], counted, and plated at a density of 25-30M neurons per 15 cm plate, 6-10M per 10 cm plate, 1M
per well of a 6-well plate, 0.5M per well of a 12-well plate, or 0.1M per well of a 24-well plate. After incubation for 1 hour at 37°C/5%
CO,, neurons were attached to the plates and media was changed to neuron maintenance media [Neurobasal Medium (Life Tech-
nologies #21103049), 2.5% B27 (ThermoFisher #17504044), 1% penicillin-streptomycin (Life Technologies #15070-063), 0.25%
GlutaMax (Life Technologies #35050061)]. On day in vitro 2 (DIV2), ara-c (Sigma #C1768) was added to a final concentration of
0.5 pM to inhibit proliferation of any contaminating glial cells. Beginning on DIV3, half the media was exchanged for fresh neuron
maintenance media every three days. Cultures were kept at 37°C/5% CO.. See Figure S1E for a representative immunofluorescence
staining of neuron-specific tubulin (Tuj1) in neuronal cultures.
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METHOD DETAILS

MEF Serum Stimulation

MEFs were serum starved in 0.5% FBS for 24 hours before stimulation with serum up to a final concentration of 15% for indicated
time points using an established protocol.'? Stimulation was stopped by immediate movement of the cultures to ice, washing with
ice-cold PBS plus 10mM sodium butyrate to inhibit histone deacetylases, 1mM sodium orthovanadate, and 1:1000 v/v protease in-
hibitor cocktail (chymostatin, Millipore #230790; leupeptin, Millipore #108975; pepstatin, Millipore #516481) and 1 phosphatase in-
hibitor tablet/10 mL (PhosSTOP, Roche #4906837001), and harvesting by scraping with a cell lifter. Cells were pelleted at 300g for
5 mins at 4°C, flash-frozen in liquid nitrogen, and saved at -80°C until use.

Membrane Depolarization by KCI Stimulation in Neurons

At the designated DIV, neurons were silenced overnight with 1 uM tetrodotoxin (Tocris #1069) and 100 pM D-APS5 (Tocris #79055-68-
8) to reflect the resting state®® and then depolarized with 50 mM KCl for indicated time points as described.’> " Briefly, to avoid ex-
citotoxic death, depolarization proceeded as follows: 3/10" of neuronal media was reserved and charged with 170 mM KCI, 2 mM
CaCl,, 1 mM MgCl,, and 10 mM HEPES pH 7.9 by adding 69.72 pL/1 mL reserved media of concentrated isotonic stimulation buffer
(2.44M KClI, 28.7 mM CaCl,, 14.4 mM MgCl,, and 143.4 mM HEPES pH 7.9). At this point, the reserved media contains 3x the final
concentration for the neuron. Control wells underwent media removal without addition of any components. The mix was restored to
each well and gently swirled for 3 seconds, then the plate was placed back in the incubator for the appropriate incubation time. The
excitotoxicity-induced gene Clcal was verified not to be upregulated in our RNA-seq datasets, excluding toxic reaction. Neurons
were then immediately moved to ice, media was then immediately exchanged to ice-cold PBS and harvested for downstream
assays.

Other Pharmacological Treatments in Neurons

Inhibition of intracellular calcium signaling

Calcium-activated signaling inhibitors were chosen to inhibit canonical calcium-activated kinase signaling pathways at their kinases
closest to the nucleus that have been identified, and have specific, cell-permeable, small molecule inhibitors. The following com-
pounds and concentrations were used: CaMKKi: STO-609, 3 pM; MEK1/2i: PD0325901, 3 pM; DCLKi: DCLK-IN-1, 2.5 pM; CaNi:
10 nM FK506 + 1 uM cyclosporin (CsA). Cyclosporin A and FK506 were used together because of the greater abundance of calci-
neurin in neurons compared to FKBP and cyclophilin, which are required for formation of inhibitor complexes.*° Inhibitors were given
at a final concentration of 0.1% DMSO for a 30 mins pre-treatment before depolarization or unstimulated for the indicated times
(30 mins or less).

Inhibition of BAF ATPase activity

FHT1015 was obtained as lyophilized powder as a kind gift from Steve Bellon, Foghorn Therapeutics. A final concentration of 100 nM
FHT1015 or DMSO at final 0.1% DMSO concentration was added to reserved neuronal media during depolarization or in the resting
unstimulated state and added back to wells. The concentration was chosen from the reported biochemical in vitro ICsq of inhibition of
BAF ATPase activity as compared to other remodelers.

Lentivirus Production

Lentivirus was produced using a previously described protocol®® from a 15 cm plate of 25M lenti-x HEK293T cells (Clontech #632180)
via polyethylenimine (PEIl) transfection, using lentiviral constructs and packaging plasmids psPAX2 and pMD2.G. Two days after
transfection, the media containing the virus was collected, filtered with a 0.4 pM filter, and ultra-centrifuged for 2 hours at
20,000 rpm in an SW28 rotor (Beckman). Relative titer was estimated by Lenti-X GoStix Plus (Takara #631280) and was similar for
all viral constructs. Viral pellets were resuspended in 250 pL PBS and flash-frozen.

CRISPR Constructs

CRISPR knockout constructs were constructed using lentiCRISPR v2 (a gift from Feng Zhang, Addgene plasmid # 52961; http://n2t.
net/addgene:52961; RRID:Addgene_52961) using gRNAs targeting isoform-conserved exons in mouse Smarcc2/Baf170 and Arid2/
Baf200. 3 gRNAs were designed using CRISPick® and pooled virus was made from the 3 lentiCRISPR v2 plasmids at equimolar
ratios. Target sequences for Smarcc2 were: (1) GCGTCCATGCCATTGAACGG; (2) ACACCGACACATTCAACGAG; and (3) GACAG
GATACACAACATGGG. Target sequences for Arid2 were (1) ACTTGCAGTAAATTAGCTCG; (2) GAGGATAAGCTTGCCCCCTG; and
(8) GCTATGATAACAGTGTCTTG. The non-targeting control sequence was GTATTACTGATATTGGTGGG.

Lentiviral Overexpression Constructs

Smarcc2 (ENSMUSP00000096734) overexpression constructs were subcloned from Smarcc2 cDNA published previously.*® Among
Smarcc?2 isoforms annotated, the transcript encoding this isoform (ENSMUST00000099131) was the highest expressed in our RNA-
seq data from cortical E16.5 neurons (average transcripts/million (TPM): 103)) and the corresponding protein (Uniprot: Q3UIDO0) was
also the primary isoform expressed in our proteomic dataset. To create lentiviral overexpression constructs, first, a wild-type (WT)
overexpression construct was subcloned into pUC19 and wobbled at PAM sites targeted by the Smarcc2 gRNAs using site-directed
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mutagenesis (NEB #E0554S) (renamed pSG141). Further site-directed mutagenesis was performed to generate point mutants at
phospho-sites of interest. The constructs were then subcloned into an EF1a-driven lentiviral vector containing a blasticidin resistance
gene driven by a PGK promoter. The final open-reading frame codes for an N-terminal FLAG tag followed by wobbled Smarcc2 that is
wild-type or contains point mutations at indicated phosphosites. A lentiviral vector encoding an empty open-reading frame was used
as a negative control in experiments. All constructs were verified using Sanger sequencing. Brg1-sfGFP was a gift from Jerry
Crabtree & Courtney Hodges (Addgene plasmid # 107056; http://n2t.net/addgene:107056; RRID:Addgene_107056).

Lentiviral Transduction of Neurons

Smarcc2 knockout and overexpression

Titer was estimated from infection of HEK293T cells and selection with puromycin (1 pg/mL) and blasticidin (0.75 pg/mL). On DIV4,
concentrated virus was added to primary neurons. The relevant CRISPR knockout and Smarcc2 overexpression or empty vector
constructs were pooled 1:1 (v:v). 10 pL of total virus was applied to one well of a 12-well plate of 0.5M neurons/well and 20 pL
was applied to one well of a 6-well plate of 1M neurons/well. Media changes and neuronal culture proceeded as normal. Neuronal
culture is sensitive to antibiotic selection and thus assays were performed after 14 days of infection (on DIV18) to allow time for over-
expression. This time point was chosen from empirical data for overexpression efficiency in neurons and validated by Western Blot
(Figure S5E).

Arid2 knockout

Titer was estimated from infection of HEK293T cells and selection with puromycin (1 pg/mL). On DIV3, concentrated virus was added
to primary neurons. 25 plL of total virus was applied to one well of a 6-well plate of 1M neurons/well. Media changes and neuronal
culture proceeded as normal. Cells were treated with indicated conditions (e.g., depolarization) and harvested for assays on DIV7.

Nuclear Extract Preparation

A 15 cm plate of neurons or fibroblasts was washed 1x with 10 mL ice cold PBS supplemented with 10mM sodium butyrate to inhibit
histone deacetylases, 1mM sodium orthovanadate, and 1:1000 (v:v) protease inhibitor cocktail (chymostatin, Millipore #230790; leu-
peptin, Millipore #108975; pepstatin, Millipore #516481) and 1 phosphatase inhibitor tablet/10 mL (PhosSTOP, Roche #4906837001).
Cells were lifted with a cell lifter and pelleted at 2,000g for 5 mins at 4°C. Pellets were flash-frozen and stored until further processing.
Low-salt/benzonase extraction of soluble nuclear protein

After thawing on ice, cell pellets were washed once more with 10 mL cold PBS supplemented with 10mM sodium butyrate, TmM
sodium orthovanadate, and protease and phosphatase inhibitors (hereafter: PBS*) and resuspended in NE10 buffer (20 mM
HEPES (pH 7.5), 10 mM KClI, 1 mM MgCl2, 0.1% Triton X-100 (v/v), protease inhibitors (Roche), 15 mM p-mercaptoethanol), dounced
15 times and pelleted. Nuclei were washed in NE10 buffer and then digested with 250 units benzonase (Millipore) for 30 mins rotating
at 25°C. Nuclei were resuspended in NE150 buffer (NE10 supplemented with 150mM NaCl) and incubated for 20 mins. Lysates were
pelleted at 16,000 g for 20 mins at 4 °C and supernatants were taken for gradient or immunoprecipitation analysis. The concentration
of protein in the supernatant was measured by Bradford.

Ammonium sulfate precipitation of chromatin from nuclei

After thawing on ice, cell pellets were washed once more with 10 mL cold PBS plus 10mM sodium butyrate, TmM sodium orthova-
nadate, and protease and phosphatase inhibitors (hereafter: PBS*) and resuspended in 250 pL Buffer A (25mM HEPES pH 7.5, 25mM
KCI, 5mM MgCl,, 10% glycerol (v/v), 0.1% NP-40 (v/v)) supplemented with 10mM sodium butyrate, 1mM sodium orthovanadate, and
protease and phosphatase inhibitors (hereafter: Buffer A*), incubated for 7 mins on ice, and an aliquot taken to count nuclei using
Trypan Blue and a hematocytometer. Nuclei were pelleted at 500g for 5 min at 4'C, and the supernatant saved as the cytosolic frac-
tion. If nuclei purity was not > 90%, the Buffer A* incubation was repeated. Nuclei were washed with 5 mL Buffer C (10mM HEPES pH
7.5, 100mM KCI, 2mM MgCl,, 10% glycerol (v/v), 0.5mM CaCl,) supplemented with 10mM sodium butyrate, 1mM sodium orthova-
nadate, and protease and phosphatase inhibitors (hereafter: Buffer C*). Nuclei were finally resuspended in 700 L Buffer C* and chro-
matin was precipitated by slow dropwise addition of 108 pL 3M ammonium sulfate (final: 0.4M) and rotation at 4°C for 1 hour. Chro-
matin was pelleted by ultracentrifuation in polyallomer centrifuge tubes (Beckman #343778 11x34mm) at 100,000 rpm for 15 mins at
4°C and the supernatant was saved. The concentration of protein in the supernatant was measured by Bradford.

Preparation of nuclear protein for whole nuclear proteomics

After nuclear extraction and chromatin precipitation with ammonium sulfate as above, supernatant (in Buffer C*) was precipitated by
1:4 (v:v) addition of trichloroacetic acid (TCA), vortexing and incubation on ice for 30 mins, pelleting by centrifugation at 16,000 g for
15 mins at 4°C, washing 1x with 1 mL ice-cold acetone, and finally washing 2x with 1 mL ice-cold methanol. Pellets containing de-
natured protein were stored at -80°C until ready for MS sample processing. For SDS-PAGE analyses, nuclear extracts were equal-
ized in protein concentration and denatured in 1X NuPage LDS/RIPA sample buffer (Thermo NP0008) supplemented with 1mM DTT
by incubation at 95 °C for 5 mins.

Preparation of nuclear protein for immunoprecipitation and gradient experiments

After nuclear extraction and chromatin precipitation with ammonium sulfate as above, 233 mg of solid ammonium sulfate was added
to the 805 pL of supernatant (in Buffer C*) (final: 2.18M at 4°C; ~50% saturation'®®) and resuspended well, then incubated on ice for
30 minutes with mixing every 10 minutes. BAF complexes and other nuclear proteins were precipitated by ultracentrifugation at
100,000 rpm for 15 mins at 4'C and the pellet was saved at -80°C until immunoprecipitation. Protein precipitation is due to increase
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in surface tension of water by ammonium sulfate that reduces solubility and favors folding, as opposed to a chaotropic (“salting-in”)
mechanism of precipitation that causes denaturation.'°° Hence, this method enables ready resolubilzation of protein for downstream
assays in any chosen buffer. The saturation percentage chosen was empirical and is useful to purify large multiprotein complexes as
well as smaller transcription factors, including RSC and SAGA,'°" RNA polymerase Il,'%? BAF from the brain,'°® and TMPRSSERG.'**
Recovery of BAF subunits in extracts from the procedure is almost 90% as shown in Figure S2A and S2B.

Immunoprecipitation (IP) from Neurons

BAF IP-Mass spectrometry (MS)

Soluble nuclear protein was resuspended in 205 pL IP Buffer 20mM HEPES pH 7.5, 150 mM KCI, 1mM MgCl,, 0.5mM CaCl,, 10% (v/v)
glycerol, 0.1% (v/v) Triton X-100) supplemented with 10mM sodium butyrate, 1mM sodium orthovanadate, and protease and phospha-
tase inhibitors (hereafter: IP Buffer*) and concentration was measured by Bradford. Extracts were normalized by total protein concen-
tration and identical amounts of total protein and concentration were used for IP in each condition (256 pg per IP at 0.86 pg/pL). 3.1%
(8 pg) was saved as input. 5 pg anti-Brg1 antibodies (SantaCruz H-10) or normal mouse IgG (Santa Cruz sc-2025) crosslinked to Protein
G Dynabeads (Invitrogen #10003D) using BS3 (bis(sulfosuccinimidyl)suberate) (ThermoFisher #A39266) were added to samples and
incubated with overnight rotation at 4 C. 5 pg antibody was incubated with rotation at room temperature to 50 uL Protein G beads,
washed 2X with 1 mL PBS and 2X with 1 mL Conjugation Buffer (20mM sodium phosphate, 150mM NaCl pH 8.0), then incubated
with 230 uL of 2.86 mg/mL BS3/Conjugation Buffer for 30 mins exactly at RT under rotation, quenched with 12.5 L 1M Tris pH 7.5
with 15 mins rotation at RT, and washed 2X with IP*. IPs were washed 3X the next day with 1mL IP Wash* (IP* except 300mM KCl instead
of 150mM KClI) and eluted with a low-pH/glycine protocol: beads were resuspended in 50 puL 0.1M glycine-HCI pH 2.5, incubated with
shaking at 900 rpm for 30 mins at 37 C, centrifuged briefly then supernatant was transferred to a new tube on ice and neutralized with
5 pL 1M Tris pH 8, and repeated once. 10% was run on a gel to confirm the IP. The remaining 90% elute was precipitated by 1:4 (v:v)
addition of trichloroacetic acid (TCA), vortexing and incubation on ice for 30 mins, pelleting by centrifugation at 16,000 g for 15 mins at
4°C, washing 1x with 1 mL ice-cold acetone, and finally washing 2x with 1 mL ice-cold methanol. Pellets containing denatured protein
were stored at -80°C until ready for MS sample processing.

IP for immunoblot

Soluble nuclear protein was resuspended in 205 pL IP Buffer 20mM HEPES pH 7.5, 150 mM KCI, 1mM MgCl,, 0.5mM CaCl,, 10% (v/v)
glycerol, 0.1% (v/v) Triton X-100) containing 10mM sodium butyrate to inhibit histone deacetylases, 1mM sodium orthovanadate, and
protease and phosphatase inhibitors (hereafter: IP Buffer*) and concentration was measured by Bradford. Extracts were normalized by
total protein concentration and identical amounts of total protein and concentrations were used for IP in each condition (50-200 pg at
0.25-1 pg/ul). 1-10% (v/v) was saved as input. 1-3 pg anti-Smarcc2/Baf170 antibodies (homemade,* rabbit polyclonal, recognizes
conserved internal epitope centered in 11e818) or normal rabbit IgG (Cell Signaling 2729) and Protein G Dynabeads (Invitrogen
#10003D) were added to samples and incubated with rotation overnight at 4°C. The IP was cross-validated using immunoblot against
the same bait but with a different antibody: anti-Smarcc2 (SantaCruz monoclonal mouse E-6). Samples were washed five times with
1 mL IP Buffer* and eluted by denaturation in 1X NuPage LDS/RIPA sample buffer (Thermo NP0008) supplemented with beta-mercap-
toethanol by incubation at 95 °C for 5 mins.

Immunoprecipitation from HEK293T Cells

HEK293T cells were transfected with sfGFP-Brg1 and FLAG-Smarcc2 constructs using polyethylenimine (PEl) and harvested after
24-48 h. Cells were lysed in NE10 buffer (20 mM HEPES (pH 7.5), 10 mM KCI, 1 mM MgCI2, 0.1% Triton X-100 (v/v), protease in-
hibitors (Roche), 15 mM f-mercaptoethanol), dounced 15 times and pelleted 5 mins at 500 g. Nuclei were washed in NE10 buffer
and then digested with 250 units benzonase (Millipore) for 30 mins rotating at 25°C. Nuclei were resuspended in NE150 buffer
(NE10 supplemented with 150mM NacCl) and incubated for 20 mins. Lysates were pelleted at 16,000 g for 20 mins at 4°C and super-
natants were immunoprecipitated by incubating 2.5ug anti-FLAG antibodies (F1804, Millipore-Sigma) and Protein G Dynabeads (In-
vitrogen #10003D) overnight at 4 °C. The IP fraction was recovered by magnetic separation. Samples were washed three times with
1 mL NE150 and eluted by denaturation in 1X NuPage LDS sample buffer (Thermo NP0008) supplemented with beta-mercaptoetha-
nol by incubation at 95 °C for 5 mins.

Glycerol Gradient

Glycerol gradients (10-30%) of nuclear proteins were carried out as previously established. ' Briefly, precipitated neuronal or MEF
nuclear protein from ammonium sulfate-precipitated extracts was resuspended in ice-cold HEMG-0 buffer (50 mM HEPES pH 7.9,
100mM KCI, 0.1 mM EDTA, 12.5 mM MgCl,) supplemented with 1mM sodium orthovanadate, 10mM sodium butyrate, and protease
and phosphatase inhibitors (hearafter: HEMG-0%). For nuclear extracts prepared with low-salt/bezonase buffer treatment, the solu-
bilized protein in NE10 buffer (20 mM HEPES (pH 7.5), 10 mM KClI, 1 mM MgCI2, 0.1% Triton X-100 (v/v), protease inhibitors (Roche),
15 mM p-mercaptoethanol) was used directly. 2.5% (v/v) was reserved as input. A 10-30% gradient of glycerol in HEMG buffer (v/v)
was poured into 14 x 89 mm polyallomer centrifuge tubes (Beckman #331372). The resuspended nuclear extract was carefully
layered on top of the gradient and centrifuged in an SW41 rotor at 40,000 rpm for 16 hours at 4'C. Twenty 500 pL fractions were
collected carefully, without disturbing the gradient, and each fraction was TCA/acetone precipitated by adding 1:4 (v:v) of trichloro-
acetic acid (TCA), vortexing and incubating on ice for 30 mins, pelleting by centrifugation at 16,0009 for 15 mins at 4 C, washing 1x
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with 1 mL ice-cold acetone, and finally washing 2x with 1 mL ice-cold methanol. Fractions were then resuspended in 1X NuPage LDS
sample buffer (Thermo NP0008) supplemented with beta-mercaptoethanol, denatured at 95 °C for 5 mins, and run on SDS-PAGE
gels. Proteins were transferred at constant 85 mA, 4 C overnight to PVDF membranes and blotted using antibodies to subunits of
the BAF complex or other controls. For comparisons between distributions in gradient experiments, the two-sample Wasserstein
distance test was used using the “wass_test” function in the R package twosamples.

Sample Processing for Quantitative TMT-Proteomic Analysis

Samples were prepared following the SL-TMT protocol.'% A total of 100 ug of protein from each nuclear extract sample (for whole
nuclear extract MS proteomics) or the elute from the Brg1 immunoprecipitation (for the BAF IP-MS) was used. Reduction of sample
(5 mM TCEP for 15 min.) was followed by alkylation (10 mM iodoacetamide for 30 min.) and quenching (5 mM DTT for 15 min.). Sam-
ples were then chloroform-methanol precipitated. The precipitated proteins were resuspended in 200 mM EPPS pH 8.5, digested
first by Lys-C overnight at room temperature and later by trypsin (6 h at 37 °C). Both enzymes were used at a 1:100 enzyme-to-protein
ratio.

The samples were then labeled with tandem mass tag (TMTpro) reagents.'°° Acetonitrile was added to a final volume of 30% prior
to adding the TMTpro labeling reagent. For protein level analysis, ~50 pg of peptides were labeled with 100 pg of TMT. For phospho-
peptide analysis, we estimated the phosphopeptide enrichment to be ~1.5:100 and so ~30 pg of peptides were labeled with 60 pg of
TMT. Labeling occurred at room temperature for 1 h. Once labeling efficiency was verified (here, >97%), hydroxylamine was added at
a final concentration of ~0.3% and incubated for 15 min at room temperature and the samples were pooled at a 1:1 ratio across all
channels.

To enrich phosphopeptides, the pooled sample was desalted over a 200 mg SepPak column and phosphopeptides were enriched
with the Pierce High-Select Fe-NTA Phosphopeptide enrichment kit following manufacturer’s instructions. The eluate was desalted
via StageTip'°° and was ready for MS analysis. The washes and the unbound fraction of this enrichment were desalted and used for
proteome-level analysis.

For whole nuclear extracts and BAF IPs, the pooled samples were desalted by solid phase extraction (100 mg SepPak column) and
fractionated using basic-pH reversed-phase (BPRP) Liquid Chromatography using an Agilent 1200 pump with an Agilent 300Extend
C18 column (2.1 mm ID, 3.5 um particles, and 250 mm in length). The flow rate over the column was 0.25 mL/min and we used 50-min
linear gradient with 5% to 35% acetonitrile in 10 mM ammonium bicarbonate pH 8. Ninety-six fractions were collected and concat-
enated into 24 superfractions prior to desalting.'®” These 24 superfractions were sub-divided into two groups, each consisting of 12
non-adjacent superfractions. These superfractions were subsequently acidified with 1% formic acid and vacuum centrifuged to near
dryness. Each superfraction was desalted via StageTip.'°® Once dried by vacuum centrifugation, the sample was reconstituted using
5% formic acid and 5% acetonitrile prior to acquisition of LC-MS/MS data.

Mass Spectrometry Data Collection and Processing

Mass spectrometric data were collected on an Orbitrap Fusion Lumos mass spectrometer, both which are coupled to a Proxeon
NanoL.C-1200 UHPLC and a FAIMSpro interface.'®® The 100 um capillary column was packed with 35 cm of Accucore 150 resin
(2.6 pm, 150 A; ThermoFisher Scientific).

Mass spectrometric data for whole nuclear extracts were collected on Orbitrap Fusion Lumos instruments (using RTS-MS3)
coupled to a Proxeon NanoLC-1200 UHPLC. The 100 pm capillary column was packed with 35 cm of Accucore 150 resin
(2.6 pm, 150,&; ThermoFisher Scientific) at a flow rate of 565 nL/min. The scan sequence began with an MS1 spectrum (Orbitrap anal-
ysis, resolution 60,000, 400—1600 Th, automatic gain control (AGC) target 100%, maximum injection time “auto”). Data were ac-
quired ~90 minutes per fraction. MS2 analysis consisted of collision-induced dissociation (CID), quadrupole ion trap analysis, auto-
matic gain control (AGC) 100%, NCE (normalized collision energy) 35, g-value 0.25, maximum injection time 35ms), and isolation
window at 0.7 Th. RTS was enabled and quantitative SPS-MS3 scans (resolution of 50,000; AGC target 2.5x105; collision energy
HCD at 55%), max injection time of 250 ms) were processed through Orbiter with a real-time false discovery rate filter implementing
a modified linear discriminant analysis. For FAIMS, the dispersion voltage (DV) was set at 5000V, the compensation voltages (CVs)
used were -40V, -60V, and -80V, and -30V, -50V, and -70V, and the TopSpeed parameter was set at 1 sec.

For IP-MS profiling, data were acquired using multiple injections (n=6) on an Orbitrap Eclipse mass spectrometer with varying com-
binations of FAIMS CVs between -30 and -80V (3 CVs per set) over a 150 min gradient. A 1sec TopSpeed cycle was used for each CV.
The scan sequence began with an MS1 spectrum (Orbitrap analysis, resolution 60,000, 400-1500 Th, automatic gain control (AGC)
target 100%, maximum injection time “auto”). Data were acquired ~90 min per fraction. The hrMS2 stage consisted of fragmentation
by higher energy collisional dissociation (HCD, normalized collision energy 36%) and analysis using the Orbitrap (AGC 300%,
maximum injection time 200 ms, isolation window 0.5 Th, resolution 50,000).

For phosphopeptide profiling, data were acquired using three to five injections on an Orbitrap Eclipse mass spectrometer with
varying combinations of FAIMS CVs between -30 and -80V (3 CVs per set) over a 150 min gradient. A 1sec TopSpeed cycle was
used for each CV. The scan sequence began with an Orbitrap MS1 spectrum with the following parameters: resolution: 120,000,
scan range: 400-1500 Th, automatic gain control (AGC): 100%, and maximum injection time: “auto.” MS2 analysis consisted of
higher-energy collisional dissociation (HCD) with the following parameters: resolution: 50,000, AGC: 300%, normalized collision
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energy (NCE): 36%, maximum injection time: 250 ms, and isolation window: 0.5 Th, and. In addition, unassigned, singly, and > 5+
charged species were excluded from MS2 analysis and dynamic exclusion was set to 60 s.

Once the spectra were converted to mzXML using MSconvert,?® database searching could be performed. Database searching
included all mouse entries from UniProt (downloaded March 2021). which was concatenated with a version of the database in which
the order of the amino acid residues of each protein was reversed. Database searches used a 50-ppm precursor ion tolerance and a
product ion tolerance of 0.03 Da for hrMS data. RTS-MS3 data used a 0.9 Da product ion tolerance.'°®"''° For static modifications,
lysine residues and peptide N-termini were modified with +304.207 Da due to the TMTpro labels and +229.162 Da for classic TMT
(IP-MS only). Meanwhile, all cysteine residues were modified with iodoacetamide (carbamidomethylation) that resultsina +57.021 Da
increase in mass. Also, methionine oxidation (+15.995 Da) was set as a variable modification. Likewise, deamidation (+0.984 Da) at
glutamine and asparagine residues and phosphorylation (+79.966 Da) at serine, threonine, and tyrosine residues were also set as
variable modifications for phosphopeptide enrichment. The false discovery rate (FDR) was set at 1% at the peptide level with filtering
a linear discriminant analysis."'" The protein lists were assembled further to a final protein-level FDR of 1%. The intensities of re-
porter ions were corrected for the isotopic impurities of the different TMT reagents.''? For each protein, the peptide summed
signal-to-noise (S/N) measurements were summed and normalized to account for equal protein loading by equating the sum of
the signal for all proteins in each channel. For phosphosite identification, the AScore'?® false-discovery metric was used and
only phosphosites that were “high-confidence”, with p < 0.05, were retained. Students’ t-test was used for differential site and pro-
tein pull-down calling. Human keratin and other contaminants were manually excluded from downstream analyses. A summary of
the BAF IP-MS and phosphoproteomic data is as follows: contaminant peptides (e.g., KRT, TRYP): 2%; unique proteins detected:
1,637; unique BAF subunits detected: 28; unique phosphosites detected: 583; unique phosphosites on BAF subunits detected: 37;
bait (Brg1) peptides detected: 709.

Western Blotting

Cells were harvested on ice in RIPA buffer (50mM Tris-HCI pH 8, 150mM NaCl, 1% NP-40, 0.1% DOC, 1% SDS, protease inhibitor
cocktail (chymostatin, Millipore #230790; leupeptin, Millipore #108975; pepstatin, Millipore #516481), 1mM MgCl,, 1TmM DTT) and
1:200 benzonase (Sigma #E1014) was added and incubated for 20 mins at room temperature. After 10 min centrifugation at
14,0009 and 4°C, the supernatant was collected and protein concentration was measured by Bradford. Antibodies used for immu-
noblots were: Brg1 (1:1000 (v:v), Santa Cruz H-10), Smarcc2/Baf170 (1:1000, homemade,** rabbit polyclonal, recognizes conserved
internal epitope centered in 1le818), Smarcc2 (1:1000, SantaCruz mouse monoclonal E-6), Smarcb1/Ini1/Baf47 (1:1000, Santa Cruz
A-5), Vinculin (1:1000, ThermoFisher 700062), CREST (1:1000, SantaCruz D-7), Hdac1 (1:1000, Cell Signaling 10E2), FLAG (1:1000,
Millipore F1804), GFP (1:1000, Invitrogen A6455), Pbrm1/Baf180 (1:1000, homemade rabbit polyclonal®”'"*"'%) Phf10/Baf45a
(1:500, GeneTex GTX116314), Brd7 (1:500, Santa Cruz B-8), Arid2 (1:500, Santa Cruz E-3), B-Actin (1:2000, Cell Signaling 13E5),
H3 (1:5000, abcam 1791) and Gapdh (1:2000, Santa Cruz 6C5). ImageStudio (Licor) was used for blot imaging and quantification.

RNA Extraction, gPCR, and Sequencing Library Preparation
Cells were harvested in TRIsure (Bioline #38033). RNA was extracted using Direct-zol RNA MicroPrep columns (Zymo #R2062)
treated with DNAsel. cDNA was prepared for RT-gPCR using the SensiFAST cDNA preparation kit according to manufacturer in-
structions (Bioline #65054). 1uL of cDNA was used per RT-gPCR reaction prepared with SYBR Lo-ROX (Bioline #94020) and carried
out using an Applied Biosystems QuantStudio 6Pro. cFos primers were from*: Fos FWD: CGGGTTTCAACGCCGACTA

Fos REV: TTGGCACTAGAGACGGACAGA; Gapdh FWD: CTGACGTGCCGCCTGGAGAAAC

Gapdh REV: CCCGGCATCGAAGGTGGAAGAGT. For sequencing library preparation, rRNA was depleted (NEB #E7400) and pre-
pared into paired-end libraries (NEB #E7760). For naive (WT) DIV7 neuron RNA-seq, polyA-enriched mRNAs were isolated (NEB
#E7490). Library size distributions were confirmed using an Agilent Bioanalyzer and High Sensitivity DNA reagents (Agilent 5067)
and concentrations determined by gPCR. Equimolar pooled libraries were sequenced on an lllumina NextSeq or HiSeq.

RNA-seq Analysis

Raw reads were checked for quality using fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed from
adapters using cutadapt®’ using parameters cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -b AGATCGGAAGAGC
GTCGTGTAGGGAAAGAGTGT -nextseq-trim=20 —minimum-length 1. Transcripts were quantified using kallisto®® against a mouse
Gencode vM24 indexed transcriptome and annotations. Transcript isoforms were collapsed to genes and differential gene analysis
was performed using DESeq2®? using apeglm''® to shrink fold changes. PCA analysis was performed using DESeq2. Pathway
analyses were performed using Enrichr®* and PANTHER®>®® on genes defined by significance cutoffs as detailed in figure
legends. Unbiased clustering analyses were performed using pheatmap''® including any significantly changed genes in treatment
conditions compared.

ATAC-seq

ATAC-seq libraries were constructed from on-plate nuclear prep of neurons plated at 1M/6-well of a 6-well plate as described
in."17 Briefly, DNase at a final concentration of 200 U/mL was added to wells for 30 mins at 37°C concurrent with indicated treat-
ment timepoints (such as stimulation, and/or drug addition). Neuronal media was quickly dumped and neurons were washed 4X
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with cold PBS. 1mL of RSB-Lysis buffer/well (10mM Tris pH 7.4, 10mM NaCl, 3 mM MgCl,, 0.1% NP-40 (v/v), 0.1% Tween-20 (v/v),
0.01% Digitonin (v/v) ) was added and incubated for 10 mins on ice, then nuclei were gently lifted, counted by a hematocytometer,
and spun down at 500 g for 4 C for 10 mins in a swing-bucket centrifuge. 75,000 nuclei were taken for further processing. Lysis
buffer was washed out with RSB-Wash (containing 0.1% Tween-20 but no NP-40 or Digitonin). The pellet was resuspended in
transposition mixture (25 pL 2X TD Buffer (20mM Tris pH 7.6, 10mM MgCl,, 20% DMF (v/v)), 100 nM final Tn5 transposase (home-
made, gift from William Greenleaf), 16.5 pL PBS, 0.5 pL 1% digitonin, 0.5 pL 10% Tween-20 (v/v), 5 pL H,0) and incubated for
30 mins at 37°C with 1000 rpm shaking. Reactions were cleaned up, amplified into libraries, indexed, and quantified using pub-
lished protocol.”” Library size distributions were confirmed using an Agilent Bioanalyzer and High Sensitivity DNA reagents (Agilent
#5067) and concentrations determined by gPCR. Equimolar pooled libraries were sequenced on an lllumina NextSeq or NovaSeq.

ATAC-seq Analysis

ATAC-seq reads were checked for quality using fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed
from adapters using trim_galore (https://github.com/FelixKrueger/TrimGalore) with parameters —paired —nextera. Trimmed reads
were aligned to the mouse mm10 genome using bowtie2 with parameters —very-sensitive -X2000. Low quality reads, duplicated
reads and reads with multiple alignments were removed using samtools®' and Picard (https://broadinstitute.github.io/picard/). Po-
sitions of Tn5 inserts were determined as read start position offset by +4 bp for reads aligned to the + strand and as a read start po-
sition offset by -5 bp for reads aligned to the - strand. macs2°® callpeak was used for peak calling with Tn5 insert positions and pa-
rameters -p 0.01 —-nolambda —shift -75 —extsize 150 -nomodel —call-summits —keep-dup all. Bedtools®® was used to find consensus
set of peaks by merging peaks across multiple conditions (bedtools merge), count number of reads in peaks (bedtools intersect -c)
and generate genome coverage (bedtools genomecov -bga). The peak differential analysis and PCA analysis was performed using
DESeq2% using apeglm''® to shrink fold changes. Motif enrichment analysis was performed on peak summits using findMotifsGe-
nome.pl from HOMER®® using parameters mm10 -size 200 -bg $bgfile where $bgfile = background of all consensus peaks detected.
Variation of accessibility at transcription factor motifs was computed by summarizing count data across 200 bp window tiles using
the ChrAccR suite (https://greenleaflab.github.io/ChrAccR/articles/overview.html) with default parameters and then calculating the
Tn5-bias-corrected Z-score of accessibility across all motifs in JASPAR using chromVAR.>® Footprint profiles were generated using
the getMotifFootprints function in ChrAccR. TOBIAS*® was used to compute differential footprint scores.

CUT&RUN Experiment and Library Preparation

CUT&RUN was performed as previously described”®’® with modifications. Briefly, neurons were plated at 1M/6-well of a 6-well
plate and harvested by scraping in 1 mL PBS supplemented with protease and phosphatase inhibitors and pelleting for 3 mins at
1,200g at 4 °C. Cells were resuspended in 1 mL nuclear extraction buffer (NE: 20mM HEPES pH 7.9, 10 mM KCl, 0.1% Triton X-100
(v/v), 20% glycerol (v/v), 0.5 mM spermidine, 1X cOmplete protease inhibitors (Roche 11836153001), 1 phosphatase inhibitor
tablet/10 mL (PhosSTOP, Roche #4906837001), pelleted at 1,700g for 3 mins at 4 °C, and washed twice more. Nuclei were resus-
pended in NE, charged with paramagnetic-bead conjugated activated Concanavalin A coated beads (EpiCypher 21-1411), and
rotated for 1 hr at 4 °C. 250,000 nuclei were counted and incubated with primary antibodies at 1:50 dilution (v:v) (anti-Brg1: Santa
Cruz H-10; anti-Smarcc2: Santa Cruz E-6) in antibody buffer 20mM HEPES pH 7.9, 150 mM NaCl, 0.5mM spermidine, protease
and phosphatase inhibitors, 0.025% digitonin, 2 mM EDTA). Incubation proceeded for 1 hr under shaking at 1,500 rpm at 4 °C;
nuclei were resuspended gently every 30 minutes. Primary antibodies were washed with wash buffer (20mM HEPES pH 7.9,
150 mM NaCl, 0.5mM spermidine, protease and phosphatase inhibitors, 0.025% digitonin) and rabbit anti-mouse IgG secondary
antibodies (EMD Millipore 06-371) were added at 1:100 (v:v) dilution in antibody buffer. Incubation proceeded for 1 hr under
shaking at 900 rpm at 4 °C; nuclei were resuspended gently every 30 minutes. Secondary antibodies were washed using wash
buffer twice and resuspended in wash buffer charged with 1:50 (v:v) dilution of pA-MNase (a kind gift from Steve Henikoff). Incu-
bation proceeded for 1 hr under shaking at 800 rpm at 4 °C; nuclei were resuspended gently every 30 minutes. Nuclei were washed
twice with wash buffer, washed once with low salt rinse buffer (3.5 mM HEPES pH 7.9, 0.5 mM spermidine, 0.025% digitonin). After
incubation in ice-cold water for 1-5 minutes to allow the temperature to reach 0 °C, digestion commenced upon addition of 10 mM
CaCl, (final). Digestion proceeded for 5 minutes before termination by addition of stop buffer at 1:3 dilution (v:v) (4X stop buffer:
680 mM NaCl, 40 mM EDTA, 80 mM EGTA, 0.04% digitonin, 0.1 pg/uL RNaseA, 0.1 pg/pL glycogen) and incubation at 37 °C for
30 minutes to release digested DNA. The sample was centrifuged at 5,000g for 5 minutes at 4 °C and supernatant containing DNA
collected. DNA was purified by phenol:chloroform extraction and size distributions were confirmed using an Agilent Bioanalyzer
and High Sensitivity DNA reagents (Agilent 5067). Libraries were prepared following described protocol to make libraries from
small DNA fragments''® (https://doi.org/10.17504/protocols.io.wvgfe3w); briefly: Paired-end sequencing libraries were con-
structed using an NEBNext Ultra |l DNA kit (E7645S) and indexed (NEB E7335). Libraries were size-selected using Ampure XP
beads (Beckman A63882). Library size distributions were confirmed using an Agilent Bioanalyzer and High Sensitivity DNA re-
agents (Agilent 5067) and concentrations determined by gPCR. Equimolar pooled libraries were sequenced on an lllumina HiSeq
with 2 x 150 bp cycles.
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CUT&RUN Analysis

The data quality was checked using fastq (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The raw reads were trimmed
from adapters with cutadapt (parameters: -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A AGATCGGAAGAGCGTCGTGTAG
GGAAAGAGTGT) and raw reads were aligned to mm10 mouse genome assembly using bowtie2 (parameters: —local -maxins 1000).
Low quality reads, duplicated reads and reads with multiple alignments were removed using samtools®' and Picard (https://
broadinstitute.github.io/picard/). deepTools®' was used to generate coverage densities across multiple experimental conditions (deep-
tools computeMatrix and deeptools plotProfile) and to generate bigwig files (deeptools bamCoverage), where reads mapping to
ENCODE blacklist regions were excluded.''® All metaprofiles shown were calculated with sequence-depth-normalized, replicate-
merged (bigWigMerge ).

Activity-dependent Dendritic Outgrowth Experiment and Analysis

Activity-dependent dendritic outgrowth was studied using established protocol in.'® After dissection, cortical neurons were nucle-
ofected (Lonza #VPG-1001) with knockout, vector control, or overexexpression constructs, along with a GFP'® construct to enable
visualization, and plated at 50,000/well on poly-D-lysine-coated 24-well glass plates (Cellvis #P24-1.5H-N). Identical quantities by
mass of DNA/cells were added for each construct. On DIV4, wells were stimulated with 30 mM KCI for 18 hours or silenced with
D-AP5/TTX. The next day, neurons were washed 1X with PBS by incubation for 5 mins at RT, fixed in 4% (v/v) paraformaldehyde
(PFA), washed 1X in PBS, permeabilized with 0.3% Triton-X-100/PBS (v/v) for 15 mins at RT, washed 3X with PBS, blocked with
2.5% normal donkey serum (Jackson ImmunoResarch #005-000-121)/2.5% normal goat serum (Jackson ImmunoResearch #017-
000-121)/1% (v/v) BSA for 1 hour at RT, then stained with 1:2000 chicken anti-GFP (Aves #GFP-1020) for visualization of dendrites
and 1:3200 rabbit anti-cFos (Cell Signaling 9FG) to validate stimulation. Staining proceeded overnight at 4°C. After 3X PBS washes,
respective secondary antibodies were added at 1:1000, washed 3X in PBS, and imaged using Keyence BZ-X710 at 40X magnifica-
tion. Dendrites were manually traced from the center of the soma using SNT,* with 20-40 neurons collected per replicate where the
analyzer was blinded to the condition being analyzed (labeled only by a code by another experimenter). Statistics including Sholl anal-
ysis and branch lengths were collected using SNT’s Sholl Analysis command and Batch Measure Multiple Files command. Statistics
were calculated using GraphPad Prism. Other antibodies used for staining included: Tuj1 (1:2000, Covance MMS-435P, recognizes
neuron-specific tubulin).

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical methods, numbers of biological replicates tested, definitions of significance, tests for comparisons between groups, and

descriptions of mean and error plotted are presented in the figure legends. Analyses of genomics and proteomics data is indicated
under each Methods subsection.
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